Featured

7302142_orig

      Exponential and Logarithmic Functions

Objectives:

  • Represents an exponential and logarithmic functions through its: table of values, graphs, and equations.
  • Determine the relationship between exponential and logarithmic functions.
  • Solve problems involving exponential and logarithmic functions.
Exponential and Logarithmic functions are important in both theory and practice. In this unit we look at the graphs and equation of these two functions to determine how they are related to each other.

_________________________________________________________________

1) Exponential Functions

Image result for exponential function

Consider a function of f(x) = a^x, where a>0. Such a function is

called an exponential functions. We can take three cases, where a = 1, 0<a<1, and a > 1.

     If a = 1 then,

f(x) = 1^x = 1

this just gives us a constant function f(x) = 1.

__________________________________________________________________

Then, what happen if a > 1To test this case, take a numerical example, let a = 2.

                                    f(x) = 2^x

      f(0) = 2^0 = 1                           f(-1) = 2^-1 = 1/2 or .5

      f(1) = 2^1 = 2                            f(-2) = 2^-2 = 1/4 or .25

      f(2) = 2^2 = 4                           f(-3) = 2^-3 = 1/8 or .125

      f(3) = 2^3 = 8                            f(-4) = 2^-4 = 1/16 or .0625

we can put these results into table, and plot a graph of the function.

Image result for exponential functions table

http://wdmath8.weebly.com

The important properties of the graphs of these types of function are:

  • f(0) = 1 for all values of a. This because a^o = 1 for any value of a.
  • f(x) > 0 for all values of  a. This because a > 0 implies a^x > 0.

______________________________________________________________

What happens if 0 < a < 1? To examine this case, take another numerical example.  Suppose that a = 1/2.

                                    f(x) = 1/2^x

    f(0) = 1/2^0 = 1                          f(−1) = 1/2^−1 = 2/1^1 = 2

    f(1) = 1/2^1 = 1/2                       f(−2) = 1/2^−2 = 2/1^2 = 4

    f(2) = 1/2^2 = 1/4                      f(−3) = 1/2^−3 = 2/1^3 = 8

    f(3) = 1/2^3 = 1/8

We can put these results into a table, and plot a graph of the function.

Image result for exponential functions table

  http://moodle.oakland.k12.mi.us/

_________________________________________________________________

2) Logarithmic Functions index

We shall now look at logarithm functions. These are functions of the form f(x) = codecogseqn  where a > 0. We do not consider the case a = 1, as this will not give us a valid function.

What happens if a > 1? To examine this case, take a numerical example. Suppose that a = 2. Then,

f(x) = codecogseqn-1 means codecogseqn-2 = x.

An important point to note here is that, regardless of the argument, codecogseqn-2 > 0. So we shall consider only positive arguments.

f(1) = codecogseqn-3 means codecogseqn-8 = 1 so f(1) = 0

f(2) = codecogseqn-5 means codecogseqn-9 = 2 so f(2) = 1

f(4) = codecogseqn-4  means codecogseqn-10 = 4 so f(4) = 2

f( 1/2 ) = codecogseqn-6 means codecogseqn-11 = 1/2 = 2^−1 so f( 1/2 ) = −1

f( 1/4 ) = codecogseqn-7 means codecogseqn-12 = 1/4 = 2^−2 so f( 1/4 ) = −2

We can put these results into a table of values, and plot a graph of the function.

Image result for logarithmic functions graph with table of values examples

http://www.smtutor.com/

The important properties of the graphs of these types of functions are:

  • f(1) = 0 for all values of a; 
  • we must have x > 0 for all values of a.

_________________________________________________________________

3) The relationship between Exponential and Logarithmic Function1529

 We can see the relationship between exponential function f(x) = e^x and the logarithm function f(x) = ln x by looking at their graphs.

7277124-orig_orig

                                    http://mrsbettis.weebly.com

We can straight away that the logarithm function is a reflection of exponential function in the line represented by f(x) = x. In other words, the axes have been swapped: x becomes f(x). and f(x) becomes x.

KEY POINTS:
The exponential function f(x) = e^x is the inverse of the logarithm function f(x) = ln x.

Powered by:

-MTAQ